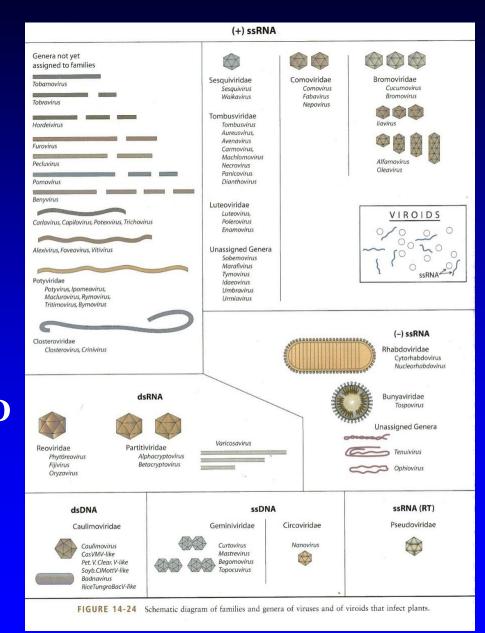

Emergence, detection and management of the new tobamovirus *Tomato brown rugose fruit virus* (ToBRFV)

Robert L. Gilbertson

Department of Plant Pathology

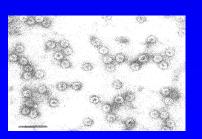

University of California Davis

Photos: N. Salem

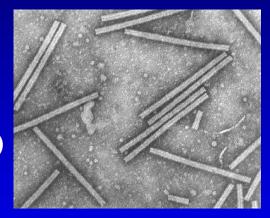
There is a remarkable diversity of viruses that infect plants

- Most plant viruses have ssRNA genomes
- Diversity in virion shape and size and the nature of the genome
- Genetically flexible and respond to changes (selection pressure)
- Disease symptoms do not allow species ID
- A large number and diversity of viruses infect tomato
- IPM is the best management approach

Different viruses can cause very similar symptoms



Tobacco mosaic virus symptoms in tobacco



Cucumber mosaic virus symptoms in tobacco

What is ToBRFV?

- A new species of a well-known group of viruses: tobamoviruses
- family Virgaviridae, genus Tobamovirus
- Genus name derived from type species: <u>Tobacco mo</u>saic virus (TMV)
- There are 37 recognized species
- All tobamoviruses possess: rigid rod-shaped virions and a monopartite positive-sense RNA genome (~6.4 kb)
- Virions are extremely stable
- No insect vector-transmitted by contact and touch facilitated by activities of humans
- TMV is one of the most extensively characterized viruses

Multiple tobamoviruses infect tomato

• At least five tobamoviruses infect tomato and induce similar symptoms:

- -Tobacco mosaic virus (TMV)
- -Tomato mosaic virus (ToMV)
- -Tobacco mild green mosaic virus (TMGMV)
- -Tomato mottle mosaic virus (ToMMV)
- -Tomato brown rugose fruit virus (ToBRFV)

		Symptoms	Symptoms				
Virus	Emergent	Leaves	Fruit Tm-2 ² Distribution		Distribution	Importance	
TMV	No	Mo, Di, SS	Browning*	Resistant	WW	Low	
ToMV	No	Mo. Di, SS	Browning*	Resistant	WW	High	
TGMMV	No	Mo, Di, SS	Few or none	Resistant	WW	Medium	
ToMMV	Yes (2013)	Mo, Di, SS	Few or none	Susceptible	MX, USA, ME, Spain	Medium	
ToBRFV	Yes (2015)	Mild Mo	Necrotic lesion	Susceptible	ME, MX, USA, Europe	High	

Emergence of ToBRFV: déjà vu all over again?

- First observed in Middle East (Jordan) in 2015
- Associated with tobamovirus symptoms on resistant tomato varieties grown in protected culture
- Virus was readily mechanically transmitted and samples tested positive for tobamovirus infection (ELISA, RT-PCR with general primers)

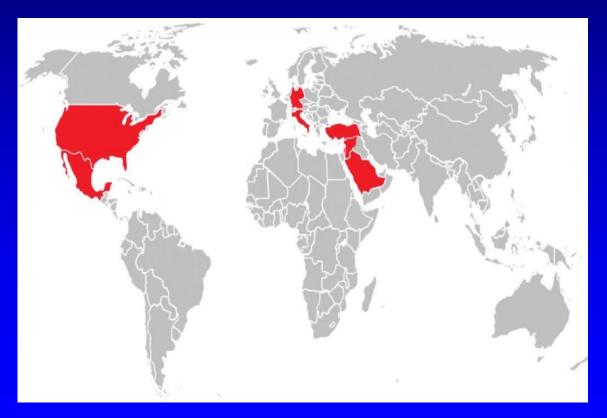
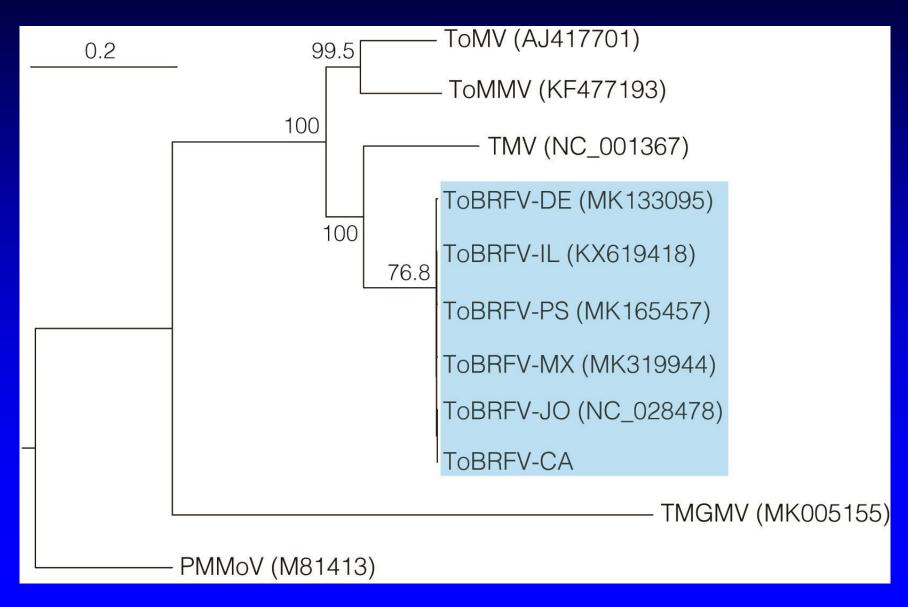
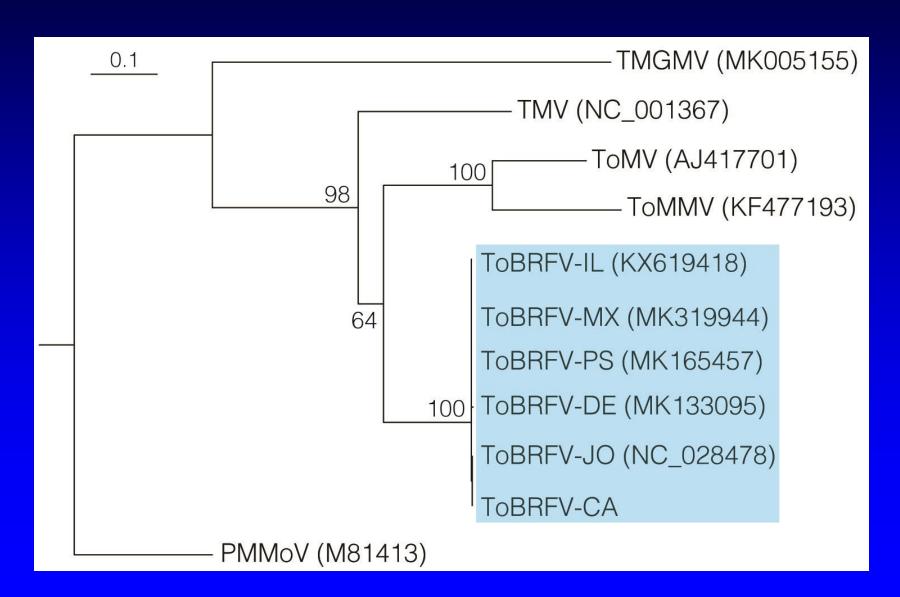

- Sequencing revealed it was a new tobamovirus species, most closely related to TMV (Ohio V) at 82.4% identity
- Spread to southern Israel and is causing substantial losses on resistant (Tm-2²) varieties
- Another example of emergence of a resistance-breaking virus and the genetic flexibility of these pathogens

Photo: N. Salem


Emergence of ToBRFV: déjà vu all over again?

- Spread to **Europe** in 2018
- Major outbreak(s) in Mexico
- Detected in USA (California) in 2018



Long-distance spread of ToBRFV

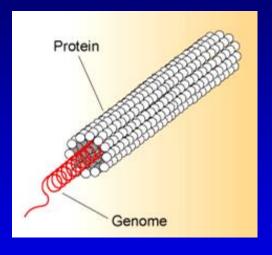
Rooted phylogenetic tree derived from the nucleotide sequences of the complete viral genome

Rooted phylogenetic tree derived from the nucleotide sequences of the viral gene that encodes the movement protein (MP)

ToBRFV isolates are closely related and genetically divergent from other tomato-infecting tobamoviruses

TABLE 1. Relative level of sequence diversity of the *Tomato brown rugose fruit virus* (ToBRFV) isolate of California and other closely related tobamovirus species

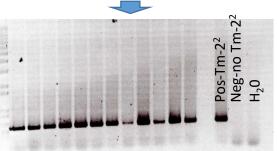
		n ^a	Genome and open reading frames (ORFs)								
ToBRFV and		ation	<u></u>	Replication Proteins			_				
tobamovirus species Year		Loc	Total	126-kDa 183-kDa		Movement protein		Capsid protein			
				nt	aa	nt	aa	nt	aa	nt	aa
ToBRFV [tomato]	2015	JO	99.9	99.9	100 (100)	100	100 (100)	100	100 (100)	99.4	100 (100)
ToBRFV [BC]	2018	MX	96.7	99.8	99.8 (99.9)	99.9	99.9 (99.9)	99.9	99.6 (99.6)	99.4	100 (100)
ToBRFV [tomato:Ps]	2018	PS	99.7	99.8	81.5 (84.2)	99.8	87.2 (89.1)	99.8	89.5 (91.7)	100	100 (100)
ToBRFV [tomato]	2014	IL	99.8	99.9	99.9 (100)	99.9	99.9 (100)	99.9	99.6 (99.6)	99.4	100 (100)
ToBRFV[tomato]	2018	DE	99.7	99.7	99.7 (99.8)	99.7	99.6 (99.8)	99.6	99.2 (99.2)	99.4	100 (100)
	,	•	•	•	•	•	•	•	•	•	
TMV [TMVgp1]	ND	ND	81.8	81.6	92.8 (97.0)	82.4	93.6 (97.4)	75.1	78 (84.3)	82.7	89.3 (95.6)
ToMV [camellia]	ND	CH	81.0	8.08	92.6 (96.5)	81.7	92.7 (96.4)	76.6	78.3 (84.6)	78.5	86.2 (91.8)
ToMMV [tomato:mx5]	2009	MX	80.9	80.5	91.5 (96.0)	81.9	92.1 (96.1)	74.1	70.9 (81.3)	80.0	86.2 (91.2)
TMGMV [N. glauca]	2018	BR	65.3	63.7	64.7 (77.6)	66.0	68.2 (80.1)	62.2	53.6 (67)	66.0	70.4 (84.9)


The tobamoviruses used for comparison and their corresponding GenBank accession numbers are: ToBRFV (NC_028478, MK319944, MK165457, KX619418 and MK133095), *Tobacco mosaic virus* (TMV) (NC_001367), *Tomato mosaic virus* (ToMV) (KF477193) and Tobacco mild green mosaic virus (TMGMV) (MK005155). ND, not determined.

^a BR, Brazil; CH, China; DE, Germany; IL, Israel; JO, Jordania; MX, Mexico; PS, Palestine.

Tobamoviruses share many biological properties

- Stable virions allow efficient transmission by contact and persistence in production systems, including in soil
- Humans are the main vector of tobamoviruses!
- Seed transmission-mostly via contamination of the seed coat-seed can be a primary source of inoculum
- Symptoms vary among tobamovirus strains and species
- Methods for diagnosis are available (indicator plants, serology [immunostrips and ELISA], RT-PCR and general/specific primers], and RT-qPCR) but for ToBRFV, sequencing is still required



Identification of ToBRFV in resistant tomato cultivars with tobamovirus symptoms

Typical tobamovirus symptoms in Tm-2² varieties

Confirm tomato is a resistant variety by PCR for Tm-2² gene

Positive test with TMV immunostrips

Confirm tobamovirus by RT-PCR

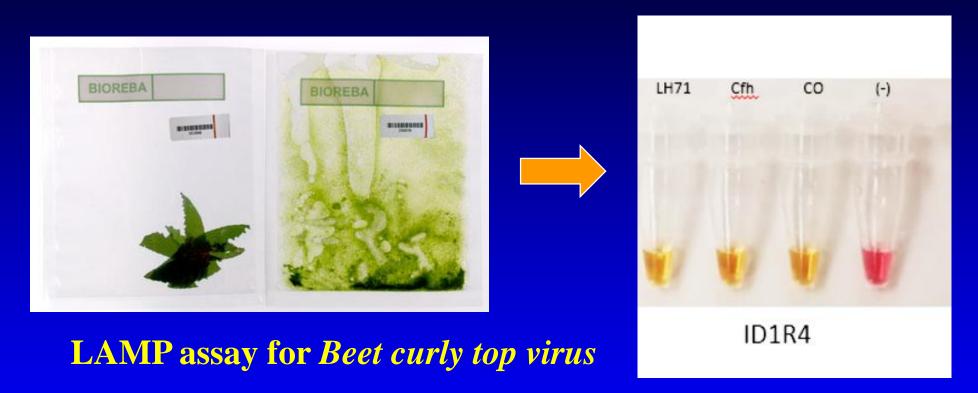
Confirm TobRFV by sequencing RT-PCR fragments and

comparing with database

Isolate of ToBRFV

If sequence is >90% identical to ToBRFV

Isolate of this tobamovirus


If sequence is >90% identical to other tobamovirus

Isolate may be a new tobamovirus

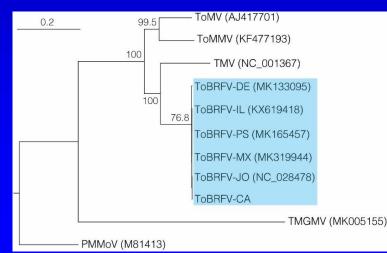
If sequence is <90% identical to tobamovirus sequences

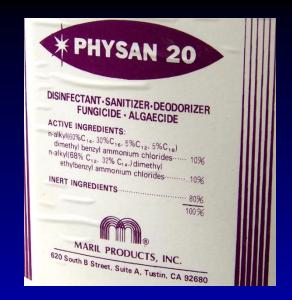
A LAMP assay for detection of ToBRFV could allow for rapid identification in leaf tissue

- Sample preparation: grind leaves in buffer in a plastic bag
- Results are obtained in 30-40 min and based on a color change from red to yellow for a positive test
- Requires minimal laboratory equipment

What is different about ToBRFV?

- More rapid spread-plants maintain a higher level of virus?
- Higher levels of seed contamination?
- Breaks Tm-2²
- Symptoms: mild mosaic and distortion in leaves and discoloration, malformation and necrotic lesions in fruit


Photo: N. Salem

- Sequence of the viral genome (RNA)relatively divergent and may be recombinant
- Fair to assume that ToBRFV shares many properties with other tomato tobamoviruses and that similar management tools can be used

IPM of ToBRFV

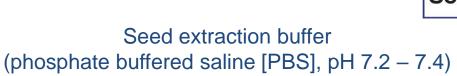
- Before the growing season
 - -Virus-free seeds/transplants
 - -Resistant/tolerant varieties*
 - -Disinfestation within the production system
- During the growing season
 - -Monitor for symptoms and remove infected plants
 - -Worker and other sanitation
 - -Minimize touching of plants
 - -Effective diagnostics
 - -Removal of infected plants
- After the growing season
 - -Sanitation, sanitation
 - -Rotation
- Long term
 - -Identify sources of resistance
 - -Cross protection
 - -Grafting on resistant rootstocks (eggplant)

Greenhouse disinfectantanother product is Virkon

Cross protection of tomato with a mild ToMV strain

Comparison of methods for detection of ToBRFV from tomato (and other) seed

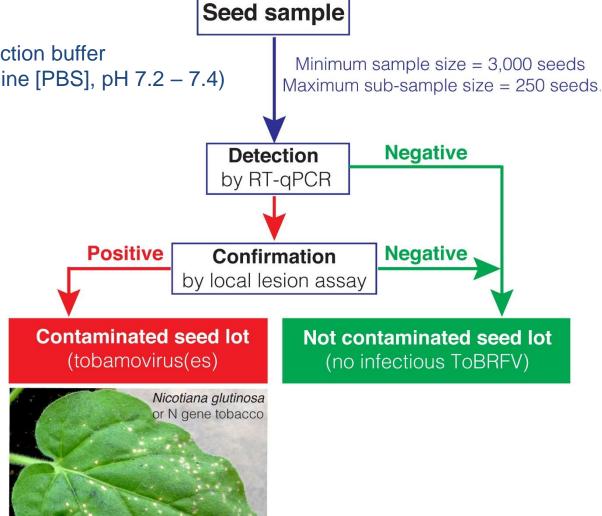
- Tests for ToBRFV associated with seed
 - -Bioassay
 - -ELISA (prescreen)
 - -qPCR
 - -RT-PCR (Mexico)
- Need for standardization
- ASTA-supported comparison of selected lots with different tests
- Share results make conclusions



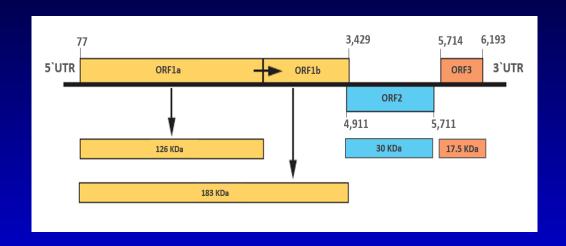
Local lesions induced by

Tomato mosaic virus (ToMV

in N gene tobacco


Detection of *Tomato brown rugose fruit virus* (ToBRFV) in tomato and pepper seed (ISHI-Veg)

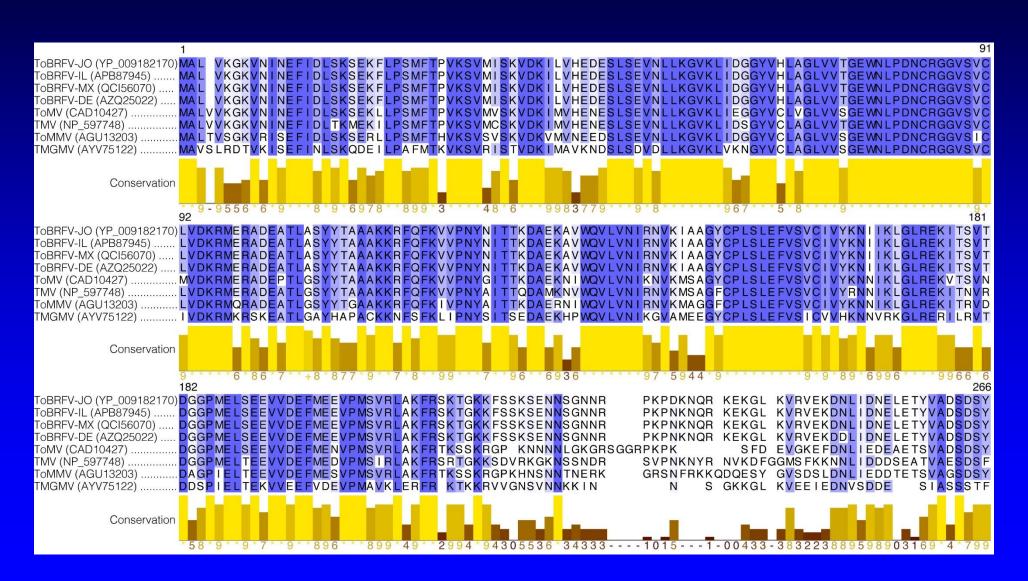
Name	Source			
CaTa28 Fw				
CaTa28 Pr	Enza Zaden B.V. Netherlands			
CaTa28 Rv	inethertalius			
CSP1325 ¹ Fw	CSP Labs			
CSP1325 Pr				
CSP1325 Rv	USA			
BaCV-F	Naktuinbouw			
BaCV-R	Netherlands			
BaCV-P				


Fw: Forward Rv: Reverse

Pr: Labeled Fluorescent Probes

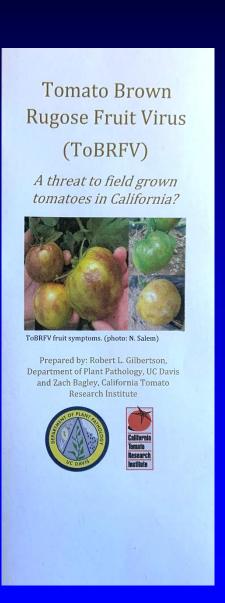
Aspects of Tm-2² breaking by ToBRFV

- Mechanisms
- Experimental systems
- Symptom determinants and mild strains
- Genetic diversity


Genome organization of ToBRFV (6393 nt)

-One +-sense ssRNA

formation


-Four genes:
ORF1a and 1b-126/183 K-replication
ORF2-30 K-movement and Tm-2² effector
ORF3-17 K-capsid protein-virion

Alignment of the amino acid sequences of the movement protein of five selected tobamovirus that infect tomato

Integarated pest management of ToBRFV

- Site visits
- IPM strategy
 - -Identify tools
 - -General or site- or production-specific strategy
 - -Evaluate in pilot study with selected growers
- Outreach
 - -Information (e.g., ASTA and UCD flyers)
 - -Grower meetings
- Monitor awareness and uptake
 - -Surveys
 - -Grower meetings

Research team

UC Davis

- Dr. Tomas Melgarejo
- Ms. Marcela Vasquez
- Mr. Minor Maliano
- Dr. Maher Al Rwahnih
- Dr. Robert L. Gilbertson

CSP Labs

Sukhi Pannu

ASTA

- Ric Dunkle
- Mary Scott

